Data mining approaches to quantifying the formation of secondary organic aerosol
Description
This research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups, the number of rings and the presence of dinitrogen pentoxide (N2O5).
This dataset is associated with the following publication:
Olson, D., J. Offenberg, M. Lewandowski, T. Kleindienst, K. Docherty, M. Jaoui, J.D. Krug, and T. Riedel. Data mining approaches to understanding the formation of secondary organic aerosol. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 252: 118345, (2021).
Resources
Name |
Format |
Description |
Link |
|
53 |
ScienceHub%20entry%20%28Olson%20DM%20SOA%29.xlsx |
https://pasteur.epa.gov/uploads/10.23719/1519378/ScienceHub%20entry%20%28Olson%20DM%20SOA%29.xlsx |
Tags
- ozone
- air-toxics
- air-quality
- data-mining
- secondary-organic-aerosol