Data for multiple linear regression models for estimating Escherichia coli (E. coli) concentrations or the probability of exceeding the bathing-water standard at recreational sites in Ohio and Pennsylvania as part of the Great Lakes NowCast, 2019

Description

Site-specific multiple linear regression models were developed for one beach in Ohio (three discrete sampling sites) and one beach in Pennsylvania to estimate concentrations of Escherichia coli (E. coli) or the probability of exceeding the bathing-water standard for E. coli in recreational waters used by the public. Traditional culture-based methods are commonly used to estimate concentrations of fecal indicator bacteria, such as E. coli; however, results are obtained 18 to 24 hours post sampling and do not accurately reflect current water-quality conditions. Beach-specific mathematical models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts”. Software designed for model development by the U.S. Environmental Protection Agency (Virtual Beach) was used. The selected model for each beach was based on a combination of explanatory variables including, most commonly, turbidity, water temperature, change in lake level over 24 hours, and antecedent rainfall. Model results are used by managers to report water-quality conditions to the public through the Great Lakes NowCast in 2019 (https://pa.water.usgs.gov/apps/nowcast/). Model performance in 2019 (sensitivity, specificity, and accuracy) was compared to using the previous day's E. coli concentration (persistence method).

Resources

Name Format Description Link
55 Landing page for access to the data https://doi.org/10.5066/P9Y9O1YJ
55 The metadata original format https://data.usgs.gov/datacatalog/metadata/USGS.5fe22dead34e30b9123f09b5.xml

Tags

  • new-york
  • bacteria
  • regression-analysis
  • economy
  • great-lakes
  • pennsylvania
  • water-quality
  • usgs-5fe22dead34e30b9123f09b5
  • ohio
  • surface-water-non-marine

Topics

Categories